Lotfi ben Othmane

Definitions

« Architectural styles define types of components and
connectors in specified topology that are useful for
structuring an application logically or physically.

« Architectural/design patterns are conceptual solutions for
recurring problems

« Tactics are design decisions that influence the control of a
quality attribute response

« Architecture styles are often mixed up with architecture
patterns — they often refer to the same thing

Practice

« Which architecture style addresses the need of data
sharing?

« Which architecture style addresses the need of
interoperability of OSs?

« What style addresses the need of deployability? What about
software with rich GUI?

Example of Modifiability Drivers

« Team members are specialized in backend, frontend, and
data processing.

« Backend does not depend on frontend.

« There could be many frontends.

« The code should be easy to modify.

Layered Architecture

An architectural style that involves grouping functionalities
into layers that only communicate in a singular direction —
upper layers send commands to lower layers.

Functionalities of each layer are related by a common role
or set of responsibilities.

Layers are often related to technologies, e.g. databases,
business, presentations.

Layered Architecture

{_\ 7 —

] ServiceA "Mﬁ I ServiceC l'_ |

Layer 1

|
S —

ServiceF] ServiceG ,
Layer 2

|

r‘_'&__ ___L‘_‘ — L v

Se'Vl(e.(ervice . " Se Oceq "

Legend

Layer

ey
Service Interface

J

Calis/\nvokes
——

Layered Architecture

Benefits:

« Abstraction — support changes of layers without impacting
the upper layers

« |solation —isolate technology upgrades

« Manageability — knowledge of the dependencies helps
manage the sections

« Possible reuse of layers
« Test layers separately

Layered Architecture

You should consider this style to:

« Use existing layered implementations that you can extend.
« Adapt to team members skills with respect to technology.
« Support different client types.

Extensibility Drivers

« Support adding new types of hardware that have unknown
interfaces

« Support adding new components to the software and use
them without the need to recompile the system

Extensibility of a Software

How would you support different types of sensors and
different types of cameras?

|
_ —
Set alert on/off % Make alerts TR L%}
_$, =
=] [|Assess ‘
dangerous
places \
O Collect sensto Detect 3
Sensor data mfngments Store 47
O} structured

date
=N T T
Camer Collect stream I
' Receive
= (alerts Emails
Send alerts & send = S
emails 1O

10

| l 1 Mongo
|__ database
server

Oracle
database
server

Types of Composition

I
1

D O_

O
O 7 HOA
O ® HO-

(1) (2) (3)

Sequential Hierarchical Additive

11

Type of Composition

Sequential composition —the composed components are
executed in sequence.

Hierarchical composition — one component calls on the services
of another.

Additive composition —the interfaces of two components are
put together to create a new component.

12

Components Interfaces

Requires interface

sensorManagement ————

sensorData)——

Provides interface

= |——O addSensor

Data collector

—) removeSensor
() startSensor
() stopSensor
——() testSensor
() initialize
——() report
(O listAll

13

Adapter Linking a Data Collector and Sensor

sensorManagement = ——O addSensor
sta;t_ . () removeSensor
_Ostop @), () startSensor
Sensori _~— Adapter O Data collector | ———() stopSensor
Cd)) sensorData () testSensor
getdata —() initialize
——() report
—— listAll

14

Interface Incompatibility

Parameter Incompatibility — where operations have the same
name but are of different types.

Operation Incompatibility — where the names of operations in
the composed interfaces are different.

Operation Incompleteness — where the provided interface of
one component is a subset of the required interface of
another.

15

Components with Incompatible Interfaces

phoneDatabase (string command)
)—

mapDB (string command)

)—

addressFinder

strin§ propertyType (stri

mapper

L— O

string location(string pn)

string owner (string pn)

displayMap (string postCode, scale)
—O

printMap (string postCode, scale)
O

16

Adapter Pattern

Address the problem of component incompatibility by
reconciling the interfaces of the used components.

An addressFinder and a mapper component may be composed
through and adapter that strips the postal code from an
address and passes this to the mapper component.

address = addressFinder.location (phonenumber) ;
postCode = postCodeStripper.getPostCode (address) ;
mapper.displayMap(postCode, 10000)

17

Plugins Architecture

« Plugins architecture allows third parties
to quickly add features to an application
without access to source code

Host application

Valid
« The software is structured as a well- plug-in
designed host framework and a set of by ®
plug-inS Invalid
plug-in

« A plug-inis a bundle that adds
functionality to a host framework
through some well-defined architecture
for extensibility.

18

Plugins Architecture

eoe o o = chromiumorg 2
£ s M8 sose. Zlmose | [lmhe. 0 2. 8 doun. Joown. | spin. @ ot © tom.. {
Tof g matches 80
Safari File Edit View History Bookmarks Window Hel () = B> Thu . N
i Y P o box The Chromium Projects
[] [em} O j= i developer.apple.com & |
| For Developers > Design nts>
J https:... £ htps:... I the... O 2020.. 98 Down... (<) Down... £ spri @ Mutt ©) Hom.. & Shromum 08 Plugin Architecture
auicklinks
Pocumenta “eportbugs
discuss. Background
n " ; Stomap.
Code Loading Programming Topics | " rchi
Table of Shromum Blog 5
¥ Table of Contents e Overview
Stansions
ntroduction . F
H H ormentof i page s et
About Loadable Bundles PI ug —-in Arc h itectures rtntof s s e Jled dosign

. o
-oadable Bundles in Cocoa ramglesare wnsed under
ZFBundle and NSBundle

Vulti-Bundle Applications This section describes how to architect an application for extensibility through plug-ins. If you want to make your application modular, c.

should read this section to learn about the different ways to build a plug-in architecture.

In-process plugins

the ek < sWebPlugin intere 5 talks "up" the chain 10 @ ebP Luginbelegate interface, wh

*lug-in Architectures
_oading Bundles
“reating Loadable Bundles

suilding Applications with

Wltiple Bundes About Plug-in Architectures o e o oo e

“reating Plug-in Architectures

reventing Name Conflicts Plug-in architectures are an attractive solution for developers seeking to build applications that are modular, customizable, and easily ext
_oading Objective-C Libraries allow third parties to add features to an application without access to source code has, for many developers, evolved into a full-blown me
from Java

Structuring an application as a well-designed host framework and a set of plug-ins gives you many benefits as an application developer:

Revision History

® <[> @O L)

, https:... Boar... =" https:... m The... O 2020... JB Down... @ Down... (_ sprin... @} Multi... C

Not Secure — eclipse.org

se Corner Article

Notes on the Eclipse Plug-in Architecture

Summary
Eclipse plug-ins embody an architectural pattern for building an application from constituent parts. This article presents an in-depth view of the participant roles and co
instance of the Eclipse workbench. The goal is to provide an understanding of plug-ins, and of how plug-in extensions are defined and processed, independently of the

Azad Bolour, Bolour Computing
July 3, 2003

Table of Contents
1. Introduction

6. Summary and Conclusions 1 9

Plugins Architecture

<?xml version="1.0" encoding="UTF-8"?>
<plugin
id="com.bolour.sample.eclipse.demo"
name="Extension Processing Demo"
version="1.0.0">
<runtime>
<library name="demo.jar"/>
</runtime>
<requires>
<import plugin="org.eclipse.ui"/>
</requires>
</plugin>

Listing 2.2. Specifying Plug-in Dependencies.

?xml version="1.0" encoding="UTF-8"?>

plugin

[1> id="org.eclipse.ui"

name="Eclipse UIL"

version="2.1.0"
provider-name="Eclipse.org"
class="org.eclipse.ui.internal.UIPlugin">

/N /\

[2> <extension-point id="actionSets" name="Action Sets"
schema="schema/actionSets.exsd"/>
<!-- Other specifications omitted. -->
</plugin>

Listing 2.3. Declaring an Extension-Point.

Host application

Invalid
plug-in

20

Plugins Architecture

Renderer
WebPluginimpl w—’-——H
WebPluginStub WebPluginDelegateProxy WebPluginDelegateProxy WebPluginStub
T Host application
*IPC Operatin“i System PC
L el ittt (]
WebPluginProxy WebPluginDelegateStub WebPluginDelegateStub WebPluginProxy

il

WebPluginDelegatelmpl

Invalid
plug-in

WebPluginProxy WebPluginDelegateStub

«-—-----*

‘ IPC
WebPluginStub WebPluginDelegateProxy -

IPC
= = = =p
Browser

Renderer

21

Performance and Reliability Patterns

How to improve the reliability and/or performance of a given
system?

22

Master-Slave Pattern

Problem: Sporadic
heavy load of a service [Master]

can cause
performance issue. ‘/l\‘

[Service 1][Service 2][Service 3]

Solution: Distribute
the load among a set
of service instances

23

Definitions

« Architectural styles define types of components and
connectors in specified topology that are useful for
structuring an application logically or physically.

« Architectural/design patterns are conceptual solutions for
recurring problems

« Deployment patterns provide models to physically structure
software

« Tactics are design decisions that influence the control of a
quality attribute response

« Architecture styles are often mixed up with architecture
patterns — they often refer to the same thing

24

Availability Tactics

Availability Tactics
Detect Faults Recover from Faults EreventiEatiis
Preparation Reintroduction
and Repair l
4 A
Ping / Echo Active Shadow Removal from
Redundancy Service
Monitor State
Passive Resynchronization Transactions Fault
Heartbeat Redundancy Masked
Ti t Escalating Predictive or
mestamp. Spare Restart Model Repair
»| Sanity Exception Exception =
Checking Handling Non-Stop Bl ntie
- Forwarding
ﬁ%ﬂgglﬁ:g Rollback Increase
Soft Competence Set
Voting oftware
Upgrade
Exception
Detection Relry
Ignore Faulty
Self-Test Behavior
Degradation
Reconfiguration

25

Interoperability Tactics

Interoperability Tactics

Information__ Locate Manage Interfaces | Request _
Exchange Correctly
Request Handled
Discover Orchestrate
Service

Tailor Interface

26

Modifiability Tactics

Change
R,

Arrives

Reduce Size
of a Module

|

Split Module

Modifiability Tactics

Increase
Cohesion

|

Increase
Semantic
Coherence

Reduce Defer
Coupling Binding

|

Encapsulate

Use an
Intermediary

Restrict
Dependencies

Refactor

Abstract Common
Services

Change Made>

within Time
and Budget

27

Practice 7

You are working on the life-style project as an initiative with
few of your friends in the context of an open source project.
You planned to produce releases every 3 months. What tactics
would you use to achieve modifiability?

1. Reduce size of modules
2. Increase cohesion

3. Reduce coupling

4. Defer binding
5

. I need further information (specify your question)

Performance Tactics

Events
Arrive

Performance Tactics

Control Resource Demand Manage Resources

l

l

Manage sampling rate Increase resources
Limit event response Introduce concurrency
Prioritize events Maintain multiple

copies of computations

Reduce overhead

Maintain multiple

Bound execution times copies of data

Increase resource

efficiency

Bound queue sizes

Schedule resources

Response
Generated
within

Time
Constraints

29

Security Tactics

Attack

Detect Attacks

Detect
Intrusion

Detect Service
Denial

Verify Message
Integrity

Detect Message
Delay

Security Tactics
Resist Attacks React to Recover
Attacks froy\ttacks
Identify Revoke Maintain Restore
Actors Access Audit Trail
Authenticate Lock J
Actors Computer See
Availability
Authorize Inform
Actors Actors
Limit Access

Limit Exposure
Encrypt Data

Validate Input

Separate
Entities

Change Default
Settings

System
Detects,

Resists,
Reacts,
or Recovers

30

Practice 7

What tactics would you use for your smart home project to
ensure that only you can access your devices

Detect intrusion

Verify message integrity
Limit access

Limit exposure

Maintain audit log
Encrypt data

Validate input

| know a better tactic

©® N O Uk~ W N RE

31

Self-check

1. What problem does the layered-architecture pattern
address?

2. How should you address the problem of incompatible
interfaces?

3. What style should we use to increase modifiability of the
system?

4. What pattern should we use to address the performance of
the system?

32

Thank you

Questions?

33

